

Carcinoma Medular de Tireoide: Genótipo e Fenótipo

Ana Luiza Maia

Professora Titular de Endocrinologia Chefe, Unidade de Tireoide Hospital de Clínicas de Porto Alegre Faculdade de Medicina – UFRGS Pesquisadora CNPq 1A

Conflict of Interests (last 5 years)

- Research grants CNPq, FAPERGS, NIH, FIPE
- Consultant or Advisory Role (AstraZeneca, Sanofi)
- Principal Investigator, Coordinator Center, Multi-Center Study, AstraZeneca.

Molecular Diagnosis of MTC

✓ Overview

- ✓ Implications of diagnosis of germline RET mutations: hereditary MTC
- \checkmark Role of RET polymorphisms
- ✓ Somatic mutations in sporadic cases
- ✓ Impact on therapy

Medullary Thyroid Cancer

- Rare thyroid C cell malignant tumor that accounts for 3-4% of thyroid gland neoplasia.
- MTC secretes a variety of products, but calcitonin is the most important biomarker.
- Accounts for nearly 15% of all thyroid cancer-related deaths

 MTC may occur sporadically (75%) or be inherited. Hereditary MTC appears as part of the MEN 2 syndrome.

Multiple Endocrine Neoplasia Type 2 (MEN2)

MEN 2A

MTC (100%), pheochromocytoma (20-50%), and/or hyperparathyroidism (10-25%); rarely associated with cutaneous lichen amyloidosis or Hirschsprung's disease.

MEN 2B

MTC, pheochromocytoma, ganglioneuromatosis, and marfanoid habitus

RET: susceptible gene for Hereditary MTC

Modified from Castellone & Melillo. Endocr Relat Cancer 2018 T105-T119 ; Plaza-Menacho, Endocr Relat Cancer 201825 77-88

RET mutation ^a	Exon	MTC risk level ^b	Incidence of PHEO ^c	Incidence of HPTH ^c	<i>CLA</i> ^d	HD^{d}
G533C	8	MOD	+	_	Ν	Ν
C609F/G/R/S/Y	10	MOD	+/++	+	Ν	Y
C611F/G/S/Y/W	10	MOD	+/++	+	Ν	Y
C618F/R/S	10	MOD	+/++	+	Ν	Y
C620F/R/S	10	MOD	+/++	+	Ν	Y
C630R/Y	11	MOD	+/++	+	Ν	Ν
D631Y	11	MOD	+++	-	Ν	Ν
C634F/G/R/S/W/Y	11	Н	+++	++	Y	Ν
K666E	11	MOD	+	_	Ν	Ν
E768D	13	MOD	_	_	Ν	Ν
L790F	13	MOD	+	-	Ν	Ν
V804L	14	MOD	+	+	Ν	Ν
V804M	14	MOD	+	+	Y	Ν
A883F	15	Н	+++	_	Ν	Ν
S891A	15	MOD	+	+	Ν	Ν
R912P	16	MOD	_	_	N	N
M918T	16	HST	+++	-	Ν	Ν

TABLE 4. RELATIONSHIP OF COMMON RET MUTATIONS TO RISK OF AGGRESSIVE MTC IN MEN2A AND MEN2B AND TO THE INCIDENCE OF PHEO HPTH CLA AND HD IN MEN2A

^aThe references for each of the RET mutations can be found in the Supplementary Information, where all reported RET mutations in MTC are listed.

^bRisk of aggressive MTC: MOD, moderate; H, high; HST, highest. ^cIncidence of PHEO and HPTH: $+ = \sim 10\%$; $++ = \sim 20\% - 30\%$; $+++ = \sim 50\%$.

^dY, positive occurrence; N, negative occurrence.

Cutaneous Lichen Amyloidosis

Multiple Endocrine Neoplasia Type 2B

Neoplasia Endocrina Multipla 2B

Maia et al, ABEM 2014

ORIGINAL ARTICLE

Clinical Screening as Compared with DNA Analysis in Families with Multiple Endocrine Neoplasia Type 2A

Cornelis Lips, Rudy M, Landsvater, Jo Hoppener, Rolf A, Geerdink, Geert Blijham, Joke M, Jansen-Schillhorn van Veen, Adriaan van Gils, Mireille J, de Wit, Richard A, Zewald, Marianne Berends, Frits A, Beemer, Joanneke Brouwers-Smalbraak, Rumo Jansen, Hans Kristian Ploos van Amstel, Theo van Vroonhoven, and Thea M, Vroom

Molecular analysis allows an unequivocal diagnosis of asymptomatic patients with NEM 2 syndrome.

Autosomal dominant, penetrance of 100%

Genotype-Phenotype Correlations and ATA Risk Level

Adapted from Cote GJ et al, NEJM 2003; ATA Guidelines 2015

Prophylactic thyroidectomy: When?

- HST risk Immediately
- H risk < 5 years of age
- MOD risk based on Ct levels

Medullary Thyroid Carcinoma Hospital de Clínicas de Porto Alegre: 1997 - 2017

www.conexaotireoide.com.br

Correlation between age at surgery and TNM stage of MEN 2A patients under 25y who underwent therapeutic or prophylactic total thyroidectomy.

Puñales et al, Thyroid 2008

Early diagnosis improves biochemical cure

However, we still do not understand...

- Genotype-phenotype correlations have not been clarify yet: clinical variability and aggressiveness in members of the same family.
- Although the different levels of RET activation induced by the different mutations could partially explain it, the differences might suggest a role for genetic modifiers in the clinical course of MTC.

Polimorfismos genéticos do RET (single nucleotide polymorphisms - SNP)

The RET polymorphic allele S836S is associated with early metastatic disease in patients with hereditary or sporadic medullary thyroid carcinoma.

Siqueira DR et al, Endo-Related Cancer 2010

Additive effect of *RET* polymorphisms on sporadic medullary thyroid carcinoma susceptibility and tumor aggressiveness

Table 5 Additive effect of *RET* polymorphic alleles on medullary thyroid carcinoma susceptibility.

Risk alleles	MTC, n=107 (%)	Controls , <i>n</i> =308 (%)	OR (95% CI);	P
None One or two Three or four	26 (24.3) 70 (65.4) 11 (10.3)	110 (35.7) 184 (59.7) 14 (4.5)	1 1.57 (0.9–2.7); 3.79 (1.5–9.5);	0.10 0.004

The distribution of *RET* risk haplotypes were significantly different between MTC patients and controls (P=0.02). P= adjusted OR, 95% CI and P values for the comparisons between cases and controls. The independent variables included in the multiple regression analyses were age, gender, and number of *RET* polymorphic alleles in the haplotype.

170:6

Role of *RET* genetic variants in MEN2-associated pheochromocytoma

Débora Rodrigues Siqueira, Lucieli Ceolin, Carla Vaz Ferreira, Mírian Romitti, Silvana Cavalcante Maia, Léa Maria Zanini Maciel¹ and

Table 4 Additive effect of *RET* polymorphic alleles of pheochromocytoma susceptibility (n=135). The independen variables included in the multiple regression analyses were age *RET* germline mutations (codons 618, 620, 634, and 918), and number of *RET* polymorphisms.

Risk alleles	PHEO (+) ^a	PHEO $(-)^{b}$	OR (95% CI)	Р
None One	14 (34.1) 17 (41.5)	39 (41.5) 43 (45.7)	1 1.3 (0.8–2.3)	0.365
Two	10 (24.4)	12 (12.8)	2.63 (1.4-5.0)	0.004

^aData available for 41 patients with PHEO. ^bData available for 94 patients without PHEO.

Eur J Endocrinol. 2014 Jun;170(6):821-8.

The penetrance of MEN2 pheochromocytoma is not only determined by *RET* mutations

Frederic Castinetti, Ana Luiza Maia, Mariola Peczkowska, et all

Table 1 Characteristics of pheochromocytoma based on geographic area.

	Southern Europe	Central Europe	Western Europe	South America	Р
Patients	185	174	190	263	
Pheochromocytoma	93 (52%)	118 (68%)	141 (74%)	110 (41%)	0.038
Unilateral	35 (38%)	44 (37%)	45 (32%)	44%)	ns
Bilateral	58 (62%)	74 (63%)	96 (68%)	56%)	ns
Synchronous	51 (88%)	48 (65%)	70 (73%)	42 (68%)	0.012
Metachronous	7 (12%)	26 (35%)	26 (27%)	20 (32%)	0.016
Patients with mutations in					
Exon 10	17/90 (19%)	9/35 (25%)	15/36 (42%)	9/78 (12%)	0.021
Exon 11	76/95 (81%)	109/139 (75%)	126/154 (81%)	101/185 (53%)	0.033
Patients with mutations in codon					
609	3/25 (12%)	3/10 (30%)	3/4 (75%)	0/0	ns
611	2/2 (100%)	1/6 (17%)	3/3 (100%)	0/6	ns
618	3/18 (17%)	3/11 (27%)	8/27 (30%)	4/17 (25%)	ns
620	9/45 (20%)	2/8 (25%)	1/2 (50%)	5/55 (9%)	0.049
634	76/95 (80%)	109/139 (78%)	126/154 (81%)	101/185 (55%)	0.038
Mean age at last follow-up (years) (min-max)	45 (12–90)	42 (7–79)	51 (6–95)	43 (7–96)	ns

Gender, male/female. For RET exon and codon lines, the rate represents the number of patients with pheochromocytoma vs the total number of patients.

Endocr Relat Cancer. 2017 24(8):L63-L67

The penetrance of MEN2 pheochromocytoma is not only determined by *RET* mutations

Percent patients with bilateral pheochromocytoma

Endocr Relat Cancer. 2017 Aug;24(8):L63-L67

Sporadic Medullary Thyroid Carcinoma

- ✓ The pathogenesis is still poorly understood.
- Somatic mutations of *RET* proto-oncogene have been reported at a variable frequency ranging from 23% to 79%.
- ✓ What is the predisposing genetic event?

Most frequently mutated genes in sporadic MTC tumor

Moura et al. Endocr Relat Cancer 2015;22:R235-R252

How does molecular diagnosis

impact MTC patient care?

Somatic RET mutation is generally thought to confer worse outcome

Adapted from Schilling, T. et al. Int J Cancer, *95*, 62–66 (2001) Adapted from Elisei, R. et al. JCEM, 93, 682–687 (2007)

, , ,								
Investigational drug	s Molecular targets	Parti stable	al response/ e disease (%)	Serious adverse events (Grade \geq 3)				
Phase 1 and 2 clinical trials								
Motesanib	VEGFR-1-3, c-Kit, RET	, PDGFR	2/48	Diarrhea (13%), fatigue (8%), hypertension (10%)				
Sorafenib	VEGFR-2–3, c-Kit, RET		6/50	Diarrhea (10%), hand-foot-skin reactions (14%), hypertension (10%), neurologic infection (10%)				
Sunitinib	VEGFR-1-3, RET, c-Kit		28/46	Fatigue (11%), diarrhea (17%), hand/foot syndrome (17%), cytopenias (46%)				
Axitinib	VEGFR-1-3, c-Kit		18/27	Hypertension (12%)				
Imatinib	RET, c-Kit, PDGFR		0/27	Hypothyroidism, rash, malaise, laryngeal mucosal swelling				
Lenvatinib	VEGFR-1–3, FGFRs 1- PDGFRα, RET, c-KIT,	-4, SCFR	50/43	Weight loss (12%), hypertension (10%), proteinuria (10%), diarrhea (10%), fatigue (9%), dehydration (9%)				
Drugs approved	Molecular targets	PFS drug vs. placebo (months	Hazard) ratio	Serious adverse events (Grade \geq 3)				
Phase 3 clinical trials								
Vandetanib	VEGFR-1-3, RET, EGFR	30.5 vs. 19.3	0.46	Diarrhea (11%), hypertension (9%), ECG QT prolonged (8%)				
Cabozantinib	VEGFR-2, RET, c-MET	11.2 vs. 4.0	0.28	Diarrhea (15.9%), hand/foot syndrome (12.6%), fatigue (9.3%)				

Table 1. Tyrosine kinase inhibitors and results of clinical trials within thyroid cancer patients

Maia et al, Current Opinion in Oncology 2017

Tumor Localization & Somatic Mutation Profiles

Median Progression-Free Survival, wk

				Hazard Datia (05%		
	No.	Placebo	Cabozantinib	Confidence Interval)	Р	
All cabozantinib patients ^a Mutational subgroups	330	17	49	0.28 (0.19-0.40)	<.0001	
RET mutation-positive	169	20	60	0.23 (0.14-0.38)	<.0001	
RET mutation-negative	46	23	25	0.53 (0.19-1.50)	.2142	
RET mutation-unknown	115	13	48	0.30 (0.16-0.57)	.0001	
RET mutations of unknown function	21	13	24	0.47 (0.14-1.60)	.3280	
RET M918T mutational status						
RET M918T mutation-positive	126	17	61	0.15 (0.08-0.28)	<.0001	
RET M918T mutation-negative	107	24	25	0.67 (0.37-1.23)	.1875	
Non-M9181 RE1 mutation-positive	43	24	36	0.70 (0.26-1.87)	.4729	
RET M918T mutation-unknown	97	12	49	0.27 (0.13-0.56)	.0002	
RAS mutational status						
RAS mutation-positive	16	8	47	0.15 (0.02-1.10)	.0317	
RET and RAS mutation-negative	30	23	24	0.88 (0.24-3.22)	.8330	

^a The hazard ratio for the entire study population was calculated with stratification factors.

^bThe hazards are not proportional.

- ✓ The cumulative understanding of molecular mechanisms involved in MTC pathogenesis had significantly impacted the diagnostic, treatment and prognosis of patients with MTC.
- Comprehensive genomic profiling of genetic alterations to identify the oncogenic drivers involved in MTC pathogenesis will hopefully refine targeted therapy in the near future.

XVII LATIN AMERICAN THYROID SOCIETY CONGRESS 2019

SAVE THE DATE!

O BUENOS AIRES - ARGENTINA

Unidade de Tireoide Hospital de Clínicas de Porto Alegre Universidade Federal do Rio Grande do Sul

Obrigado pela atenção!